Importancia de la reducción del metabolismo del cortisol

Hipercortisolemia en los pacientes críticamente enfermos

La reducción de la degradación del cortisol debida a la supresión de la expresión y activación de las enzimas que lo metabolizan contribuye a la hipercortisolemia y por lo tanto a la supresión de la corticotrofina.

Autor/a: Dres. Eva Boonen, Hilke Vervenne, Philippe Meersseman, Ruth Andrew, Leen Mortier, Peter E. Declercq, Yoo-Mee Vanwijngaerden

Fuente: N Engl J Med 2013.

Indice
1. Referencias
2. Artículo

1. Mesotten D, Vanhorebeek I, Van den Berghe G. The altered adrenal axis and treatment with glucocorticoids during critical illness. Nat Clin Pract Endocrinol Metab 2008;4:496-505.
2. Widmer IE, Puder JJ, Konig C, et al. Cortisol response in relation to the severity of stress and illness. J Clin Endocrinol Metab 2005;90:4579-86.
3. Vermes I, Beishuizen A. The hypothalamic- pituitary-adrenal response to critical illness. Best Pract Res Clin Endocrinol Metab 2001;15:495-511.
4. Annane D, Sebille V, Troche G, Raphael JC, Gajdos P, Bellissant E. A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 2000;283:1038-45.
5. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002;288:862-71. [Erratum, JAMA 2008;300:1652.]
6. Selye H. The general adaptation syndrome and the diseases of adaptation. J Clin Endocrinol Metab 1946;6:117-230.
7. Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med 2008;358:111-24.
8. Vermes I, Beishuizen A, Hampsink RM, Haanen C. Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. J Clin Endocrinol Metab 1995;80:1238-42.
9. Bornstein SR, Engeland WC, Ehrhart- Bornstein M, Herman JP. Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab 2008;19:175-80.
10. Bornstein SR, Chrousos GP. Adrenocorticotropin (ACTH)- and non-ACTHmediated regulation of the adrenal cortex: neural and immune inputs. J Clin Endocrinol Metab 1999;84:1729-36.
11. Stimson RH, Andersson J, Andrew R, et al. Cortisol release from adipose tissue by 11beta-hydroxysteroid dehydrogenase type 1 in humans. Diabetes 2009;58:46-53.
12. Tomlinson JW, Walker EA, Bujalska IJ, et al. 11Beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 2004;25:831-66.
13. Langlois VS, Zhang D, Cooke GM, Trudeau VL. Evolution of steroid-5alphareductases and comparison of their function with 5beta-reductase. Gen Comp Endocrinol 2010;166:489-97.
14. Ackermann D, Vogt B, Escher G, et al. Inhibition of 11beta-hydroxysteroid dehydrogenase by bile acids in rats with cirrhosis. Hepatology 1999;30:623-9.
15. McNeilly AD, Macfarlane DP, O’Flaherty E, et al. Bile acids modulate glucocorticoid metabolism and the hypothalamic- pituitary-adrenal axis in obstructive jaundice. J Hepatol 2010;52:705-11.
16. Stauffer AT, Rochat MK, Dick B, Frey FJ, Odermatt A. Chenodeoxycholic acid and deoxycholic acid inhibit 11 betahydroxysteroid dehydrogenase type 2 and cause cortisol-induced transcriptional activation of the mineralocorticoid receptor. J Biol Chem 2002;277:26286-92.
17. Vanwijngaerden YM, Wauters J, Langouche L, et al. Critical illness evokes elevated circulating bile acids related to altered hepatic transporter and nuclear receptor expression. Hepatology 2011;54:1741-52.
18. Knaus WA, Draper EA, Wagner DP,
Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818-29.
19. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992;101:1644-55.
20. Coolens JL, Van Baelen H, Heyns W. Clinical use of unbound plasma cortisol as calculated from total cortisol and corticosteroid- binding globulin. J Steroid Biochem 1987;26:197-202.
21. Vanhorebeek I, Peeters RP, Vander Perre S, et al. Cortisol response to critical illness: effect of intensive insulin therapy. J Clin Endocrinol Metab 2006;91:3803-13.
22. Andrew R, Smith K, Jones GC, Walker BR. Distinguishing the activities of 11beta-hydroxysteroid dehydrogenases in vivo using isotopically labeled cortisol. J Clin Endocrinol Metab 2002;87:277-85.
23. Andrew R, Westerbacka J, Wahren J, Yki-Jarvinen H, Walker BR. The contribution of visceral adipose tissue to splanchnic cortisol production in healthy humans. Diabetes 2005;54:1364-70.
24. Basu R, Basu A, Grudzien M, et al. Liver is the site of splanchnic cortisol production in obese nondiabetic humans. Diabetes 2009;58:39-45. [Errata, Diabetes 2009;58:1936, 2010;59:1283.]
25. Hughes KA, Manolopoulos KN, Iqbal J, et al. Recycling between cortisol and cortisone in human splanchnic, subcutaneous adipose, and skeletal muscle tissues in vivo. Diabetes 2012;61:1357-64.
26. Best R, Walker BR. Additional value of measurement of urinary cortisone and unconjugated cortisol metabolites in assessing the activity of 11 beta-hydroxysteroid dehydrogenase in vivo. Clin Endocrinol (Oxf) 1997;47:231-6.
27. Andrew R, Phillips DI, Walker BR. Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab 1998;83:1806-9.
28. Ulick S, Tedde R, Wang JZ. Defective ring A reduction of cortisol as the major metabolic error in the syndrome of apparent mineralocorticoid excess. J Clin Endocrinol Metab 1992;74:593-9.
29. Palermo M, Shackleton CH, Mantero F, Stewart PM. Urinary free cortisone and the assessment of 11 beta-hydroxysteroid dehydrogenase activity in man. Clin Endocrinol (Oxf) 1996;45:605-11.
30. Walker BR. How will we know if 11beta-hydroxysteroid dehydrogenases are important in common diseases. Clin Endocrinol (Oxf) 2000;52:401-2.
31. Drake AJ, Livingstone DE, Andrew R, Seckl JR, Morton NM, Walker BR. Reduced adipose glucocorticoid reactivation and increased hepatic glucocorticoid clearance as an early adaptation to high-fat feeding in Wistar rats. Endocrinology 2005;146:913-9.
 32. Trainer PJ, Besser M. The Bart’s endocrine protocols. New York: Churchill Livingstone, 1995:52.
33. Fenske M. Urinary free cortisol and cortisone excretion in healthy individuals: influence of water loading. Steroids 2006; 71:1014-8.
34. Mericq MV, Cutler GB Jr. High fluid intake increases urine free cortisol excretion in normal subjects. J Clin Endocrinol Metab 1998;83:682-4.
35. Melby JC, Spink WW. Comparative studies on adrenal cortical function and cortisol metabolism in healthy adults and in patients with shock due to infection. J Clin Invest 1958;37:1791-8.
36. Sandberg AA, Eik-Nes K, Migeon CJ, Samuels LT. Metabolism of adrenal steroids in dying patients. J Clin Endocrinol Metab 1956;16:1001-16.
37. White PC, Mune T, Agarwal AK. 11 Beta-hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev 1997;18:135-56.
38. Barquist E, Kirton O. Adrenal insufficiency in the surgical intensive care unit patient. J Trauma 1997;42:27-31.
39. Stewart PM, Walker BR, Holder G, O’Halloran D, Shackleton CH. 11 Betahydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 1995;80:3617-20.
40. Quattropani C, Vogt B, Odermatt A, Dick B, Frey BM, Frey FJ. Reduced activity of 11 beta-hydroxysteroid dehydrogenase in patients with cholestasis. J Clin Invest 2001;108:1299-305.